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 Not an introduction to programming in Sigma
 Also not a hands on tutorial

 Goal is instead to provide a deeper insight into Sigma:
 What it is about

 How it works

 What it is capable of

 Will mix lecture, live demonstration and Q&A

 Sigma 34 on fairly slow machine (old MacBook Air)

 Sigma 35 on more appropriate machine runs 2-3 times faster

Goal of this Tutorial

First public tutorial on Sigma

Feel free to ask questions at any time
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 Fixed structure underlying mind (& thus intelligent behavior)
 Defines mechanisms for memory, reasoning, learning, interaction, ...

 Specifies how mechanisms interact

 Supports acquisition and use of knowledge and skills

 Related to AGI architectures, intelligent agent & robot 
architectures, AI languages, whole brain models, …

Cognitive Architecture

Examples from Soar

USC/ICT – SASOCMU USC/ISI & UM – IFOR
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Overall Desiderata for the Sigma ( ) Architecture𝚺

 A new breed of cognitive architecture that is
 Grand unified

 Cognitive + key non-cognitive (perceptuomotor, affective, …)

 Functionally elegant
 Broadly capable yet simple and theoretically elegant

 Sufficiently efficient
 Fast enough for anticipated applications

 For virtual humans (& intelligent agents/robots) that are
 Broadly, deeply and robustly cognitive

 Interactive with their physical and social worlds

 Adaptive given their interactions and experience

 For integrated models of natural minds

Hybrid: Discrete + Continuous
Mixed: Symbolic/Relational + Probabilistic/Statistical
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 Can the diversity of intelligent behavior arise from the interactions 
among a small general set of mechanisms?

 Cognitive Newton’s laws

 Elementary cognitive particles  Periodic table of behaviors

 Cognitive axioms  “Proofs” of behavioral theorems

 Given a small set of general mechanisms how many requisite 
behaviors can be produced?

 Discovering “proofs” of intelligent behaviors

 Deconstructing intelligent behaviors in terms of cognitive mechanisms

 Towards deeper theories with greater explanatory reach

 Discovering a sufficient small general set of cognitive mechanisms

 Discovering how they can yield the breadth of intelligent behavior

More on Functional Elegance

Akin to Universal AI (Hutter) in spirit, but not necessarily as minimal
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Soar 9 (UM)

Modular versus Deconstructed (Functionally Elegant) 
Approaches to Cognitive Architecture

Episodic 
Memory

Semanti
c 

Memory

Procedural 
Memory

Working Memory

Imagery
Memory

Perception Motor

Modular

Episodic 
Memory

Semanti
c 

Memory

Procedural 
Memory

Working Memory

Imagery
Memory

Working Memory

Long-Term Memory

Perception Motor

Deconstructed

Specialization and Combination



7

Graphical Architecture Hypothesis

Soar 9

Cognitive
Architectures

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Graphical
Models

+

Key to success is blending what has been learned from over three decades 
of independent work in cognitive architectures and graphical models
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 Constructed in layers
 In analogy to computer systems

The Structure of Sigma

Computer System

Computer
Architecture

Microcode
Architecture

Programs & 
Services

Hardware

Memory & ReasoningInput Decisions & Learning Output

Cognitive Architecture:
Predicates
Conditionals
Control structure

Graph ModificationGraph Solution
Graphical Architecture:

Graphical models
Piecewise-linear 

functions
Gradient-descent 

learning

 𝚺 Cognitive System

Cognitive
Architecture

Graphical
Architecture

Knowledge & Skills

Lisp
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COGNITIVE 
ARCHITECTURE

Predicates

Conditionals

Control Structure
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 Transitive closure: Next(a, b) & Next(b, c)  Next(a, c)
 Given Next(i1, i2) and Next(i2, i3), yield Next(i1, i3)

 Naïve Bayes classifier
 Given cues, retrieve/predict object category & missing attributes

 E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, 
Mobile=T, Weight=67

Initial Example Tasks

Category

Alive Legs Mobile WeightColor
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 Specify relations among typed arguments
 Defined via a name, typed arguments and other optional attributes
 (predicate 'concept :arguments '((id id) (value type %)))

 Types may be symbolic or numeric (discrete or continuous)
 (new-type 'id :constants '(i1 i2 i3))
 (new-type 'type :constants '(walker table dog human))
 (new-type 'color :constants '(silver brown white))
 (new-type 'i04 :numeric t :discrete t :min 0 :max 5)

 Discrete [0, 5) => 0, 1, 2, 3, 4

 (new-type 'weight :numeric t :min 0 :max 500)
 Continuous [0, 500) => [0, 500-ε]

 Predicates may be open or closed world
 Whether unspecified values are assumed false (0) or unknown (1)
 (predicate 'concept2 :world 'closed :arguments '((id id) (value type !)))

 Arguments may be universal or unique (distribution or selection)
 (predicate 'next :world 'closed :arguments '((id id) (value id)))

Predicates

Symbolic

Discrete Numeric

Continuous Numeric

Pure rules: Closed and universal
Pure probabilities: Open and unique

When both, unique are “function of” universal
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 Each predicate induces a segment of working memory (WM)
 Closed-world predicates latch their results for later reuse while open-

world predicates only maintain results while supported
 Selection predicates latch a specific choice rather than whole distribution

 Best, probability matching, Boltzmann, expected value, …

 Perception predicates induce a segment of the perceptual buffer
 Input is latched in perceptual buffer until changed

 Predicates may also include an optional (piecewise linear) function
 Long-term memory (LTM) for predicate
(predicate 'concept-color :arguments '((concept type) (color color %))
           :function '((.95 walker silver) (.05 walker brown)
                       (.05 table silver) (.95 table brown)
                       (.05 dog silver) (.7 dog brown) (.25 dog white)
                       (.5 human brown) (.5 human white)))

 With episodic memory, also get LTM for history of predicate’s values

Predicate Memories

:perception t

P(color | concept)



13

 Structure long-term memory (LTM) and basic reasoning

 Deep blending of traditional rules and probabilistic networks

 Comprise a name, predicate patterns and an optional function

 Patterns may include constant tests and variables (in parentheses)
 (tetromino (x (x)) (y 1) (present true))
 [Constant tests have been generalized to piecewise-linear filters]

 Patterns may be conditions, actions or condacts

 As with predicate functions, conditional functions are piecewise linear

Conditionals

 (conditional 'trans
    :conditions ’((next (id (a)) (value (b)))
                  (next (id (b)) (value (c))))
    :actions '((next (id (a)) (value (c)))))

 (conditional 'concept-color*join
    :conditions '((object (state (state)) (id (id))))
    :condacts '((concept (id (id)) (value (concept)))
                (color (id (id)) (value (color)))
                (concept-color (concept (concept)) (color (color))))

 (conditional 'acceptable
    :conditions '((state (state (s)))
                  (operator (id (o)) (state (s))))
    :actions '((selected (state (s)) (operator (o))))
               :function .1)
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 Conditions and actions embody traditional rule semantics

 Conditions: Access information in WM

 Actions: Suggest changes to WM

 Multiple actions for the same predicate must combine in WM
 Traditional parallel rule system uses disjunction (or): A ∨ B
 Sigma uses multiple approaches depending on nature of predicate

 For a universal predicate, uses maximum: Max(A, B)

 For a normalized distribution, uses probabilistic or: P(A ∨ B)
 = P(A) + P(B) – P(AB) ≈  P(A) + P(B) – P(A)P(B)

 Assumes independence since doesn’t have access to P(AB)

 For an unnormalized distribution, uses sum: P(A) + P(B)

Conditionals (Rules)

(conditional 'trans
   :conditions ’((next (id (a)) (value (b)))
                 (next (id (b)) (value (c))))
   :actions '((next (id (a)) (value (c)))))

(conditional 'acceptable
   :conditions '((state (state (s)))
                 (operator (id (o)) (state (s))))
   :actions '((selected (state (s)) (operator (o))))
   :function .1)
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 Condacts embody (bidirectional) constraint/probability semantics

 Access WM and suggest changes to it (combining multiplicatively)

 Functions relate/constrain/weight combinations of values of 
specified variables (or are constant if no variables specified)

 Functions traditionally part of conditionals in Sigma, but now 
preferably specified as part of predicates, unless constant

 Was effectively specifying a pseudo-predicate in conditionals

Conditionals (Probabilistic Networks)

 (conditional 'concept-color
               :conditions '((object (state (state)) (id (id))))
               :condacts '((concept (id (id)) (value (concept)))
                           (color (id (id)) (value (color))))
               :function-variable-names '(concept color)
               :function '((.95 walker silver) (.05 walker brown)
                           (.05 table silver) (.95 table brown)
                           (.05 dog silver) (.7 dog brown) (.25 dog white)
                           (.5 human brown) (.5 human white)))

(conditional 'concept-color*join
    :conditions '((object (state (state)) (id (id))))
    :condacts '((concept (id (id)) (value (concept)))
                (color (id (id)) (value (color)))
                (concept-color (concept (concept)) (color (color))))

(predicate 'concept-color :arguments '((concept type) (color color %))
    :function '((.95 walker silver) (.05 walker brown)
                (.05 table silver) (.95 table brown)
                (.05 dog silver) (.7 dog brown) (.25 dog white)
                (.5 human brown) (.5 human white)))

Pattern types and functions can be mixed arbitrarily in conditionals



16

 Unified representation for continuous, discrete and symbolic data

 At base have multidimensional continuous functions
 One dimension per variable, with multiple dimensions providing relations
 Approximated as piecewise linear over arrays/tensors of regions

 Discretize domain for discrete distributions (& symbols)

 Booleanize range (and add symbol table) for symbols

    Color(O1, Brown) & Alive(O1, T)

 Dimensions/variables are typed

Piecewise Linear Functions

P(weight | 
concept) Walker Table …

[1,10> .01w .001w …

[10,20> .2-.01w “ …

[20,50> 0
.025-.00

025w …

[50,100
>

“ “ …

O1 Brown Silver White

T 1

0
F 0

P(legs | 
concept) Walker Table …

1 0 0 …

2 0 0 …

3 0 .1 …

4 1 .9 …

Analogous to implementing digital 
circuits by restricting an inherently 

continuous underlying substrate
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1 2 3 40

1 2 3 40

1.3 2.1 2.95 40 2.4

1 2 3 40 walker table dog human

1

(a) Continuous (approximation)

(c) Discrete (center on integer)

(b) Discrete (start on integer)

(d) Symbolic

Piecewise Continuous) Functions

Unique variables: Distribution over which element of domain is valid (like random variables)
Universal variables: Any or all elements of the domain can be valid (like rule variables)
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 Classic sliding tile puzzle

 Represented symbolically in standard AI systems

 LeftOf(cell11, cell21), At(tile1, cell11), etc.

 Typically solved via some weak search method

The Eight Puzzle



19

 Instead represent as a 3D function
 Continuous spatial x & y dimensions

 dimension[0-3)

 Discrete tile dimension (an xy plane)

 tile[0:9)

 Region of plane with tile has value 1

 All other regions have value 0

Hybrid Representation of Eight Puzzle Board
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 Offset boundaries of regions along a dimension

 Special purpose optimization of a delta function

How to Slide a Tile

CONDITIONAL Move-Right
   Conditions: (selected state:s operator:o)
               (operator id:o state:s x:x y:y)

             (board state:s x:x y:y tile:t)
             (board state:s x:x+1 y:y tile:0)
 Actions: (board state:s x:x+1 y:y tile:t)
          (board state:s x:x y:y tile:0)

C
R

O
PP

A
D
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 A reactive layer
 One (internally parallel) graph/cognitive cycle

Which acts as the inner loop for

 A deliberative layer
 Serial selection and application of operators

Which acts as the inner loop for

 A reflective layer
 Recursive, impasse-driven, meta-level generation

 The layers differ in
 Time scales

 Serial versus parallel

 Controlled (System 2) versus automatic (System 1)

Control Structure: (Soar-like) Nesting of Layers

Tie

No-Change
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 Perceive into perceptual buffer (for perception predicates)
 Ideally/ultimately just raw signal

 Process conditionals to update distributions in WM
 Accomplishes both long-term memory access and basic reasoning

 For both cognitive and sub-cognitive (e.g., perceptual) processing

 Doesn’t make decisions or learn

 Decide by choosing one set of values for the selection arguments in 
each selection predicate
(predicate 'concept2 :world 'closed :arguments '((id id) (value type !)))

 Latch WM distributions and selections (for closed-world predicates)

 Learn for predicate and conditional functions (when enabled)

 Execute output commands

Reactive Layer
One Decision/Cognitive Cycle

Memory & ReasoningInput Decisions & Learning Output
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Deliberative Layer
The Problem Space Computational Model

Follows path determined by knowledge
•   Knowledge-intensive or algorithmic behavior
•   Best, probability matching, Boltzmann, …

Doesn’t actually do combinatoric search
•  Requires reflection



24

 Determine location in corridor

 Map corridor

 Learn to go to goal location in corridor

 Learn to model action effects

New Task: Simulated Robot in 1D Corridor

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09

Wall WallDoor1 Door2

RL

SLAM



25

 States
 Closed-world predicates with state argument

  (predicate 'location :world 'closed
    :arguments '((state state) (x location !)))
  (predicate 'board :world 'closed

        :arguments '((state state) (x dimension) (y dimension) (tile tile !)))

 Operators
 A type for (internal) actions

 Specified via init-operators or init

 Operators selected for states via selected predicate
(predicate ’selected :world ’closed :select ’best
  :arguments '((state state) (operator tile !)))

 Operators apply to states – via conditionals – to yield new states
 Assumed done, and removed, on change to a unique state predicate

Deliberative Layer
The Problem Space Computational Model

0 1 2 3 4 5 6 7

state predicates
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 Impasses occur for problems in operator selection
 None: No operator acceptable (i.e., none with a non-zero rating)

 Tie: More than one operator has the same best rating
 And the rating is not 1 (best)

 No-change: An operator remains selected for >1 decision

 Impasses yield subgoals (meta-levels, reflective-levels, …)
 Confusingly, these levels are called states (modeled after Soar)

 The state argument in predicates is thus actually for levels

 There are no unique symbols designating distinct states at a level

 Subgoal flushed when impasse goes away
 Or when a change occurs higher in hierarchy

Reflective Layer
Impasses and Subgoaling (Meta-Levels)

Tie

No-Change
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 Tie impasses for selecting 
operators

 No-change impasses for 
implementing complex (multi-
step) operators

 Can combine for search
0. Tie among task operators

1. No-change on evaluation 
operators

2. Simulate operator to see how 
good it is

Typical Processing
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Ultimatum Game

 Multiagent game (Use init to specify multiagent type)

 A offers to keep 0, 1, 2 or 3 out of a total of 3, with rest to B

 B accepts or rejects offer

 If B accepts, A gets offer and B gets (3 – offer)

 If B rejects, both get nothing

0
1
2
3

E(2)

accept
reject

tie

no-change

2

E(accept)

tie

no-change

accept

A

B

0
1
2
3tie

none

A
1

A
0
1
2
3

E(2)

accept
reject

tie

no-change

2

tie

none

A

B

TA TBaccept rewardoffer

exp

Or can solve reactively via explicit POMDP:

Automatize?

Solves implicit POMDP

Softmax model of B’s
  choice (from reward)
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GRAPHICAL
ARCHITECTURE

Graphical models

Piecewise-linear functions

Gradient-descent learning
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 Efficient computation over multivariate functions by leveraging forms of 

independence to decompose them into products of simpler subfunctions
 Bayesian/Markov networks, Markov/conditional random fields, factor graphs

 Typically solve via message passing (e.g., summary product) or sampling

 Can support mixed and hybrid processing

 Several neural network models map onto them

 Yield broad range of state-of-the-art capability from a uniform base
 Across symbols, probabilities & signals via uniform representation & reasoning algorithm

 (Loopy) belief propagation, forward-backward algorithm, Kalman filters, Viterbi algorithm, FFT, turbo decoding, arc-

consistency, production match, …

Graphical Models

w

y
x

z

u

p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|
x)

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z) Σ

 major potential for satisfying all three desiderata
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 Compute variable marginals (sum-product/integral-product) or mode 
of entire graph (max-product)

 Pass messages on links and process at nodes
 Messages are distributions over link variables (starting w/ evidence)

 At variable nodes messages are combined via pointwise product

 At factor nodes do products, and summarize out unneeded variables:

12
21
32
 ...

y zx

f1 =

0 2 4 6 …
1 3 5 7 …
2 4 6 8 …
    …

f2 =

0 1 2 …
1 2 3 …
2 3 4 …
    …

(Factor Graphs and) Summary Product Algorithm

2
3
4
..
.

6
7
8
..
.

[0 0 0 1 0 …] [0 0 1 0 0 …]
“3” “2”

In Sigma, both functions and 
messages are piecewise linear
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 Predicates and conditionals compile into portions of factor graph
 Graph solution via passing of piecewise-linear messages yields both 

long-term memory access and basic reasoning

 Graph modification based on messages arriving at factor nodes yields 
both decisions and learning

Relationship Back to Cognitive Architecture 

WM

Alpha Network

Beta Network

Alpha Memories

Beta Memory

Rule Node

Rete for rule match

C1 & C2 & C3  A1 & A2
WMFNs

WMVNs

Gamma Network (CF)

Beta Network

Inversion

Filter

Affine Delta

Affine

Alpha Network

conditions

condact

actions

function
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CONDITIONAL Transitive
   Conditions: Next(a,b)
               Next(b,c)
   Actions: Next(a,c)

(type ’ID :constants ‘(I1 I2 I3))

(predicate ‘Next ‘((first ID) (second ID)) :world ‘closed)

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0

1 0

 Procedural if-then Structures

 Just conditions and actions

Procedural Memory (Rules)

WM

Pattern

Join

I2

s
e
c
o
n
d

first

I1

I2 I3I1

I3

WM Next(I1,I2)
Next(I2,I3)

Ne
xt
(a
,b
)

Next(b,c)
I2c

b

I1

I2 I3I1

I3

I2b

a

I1

I2 I3I1

I3

a

b

c

I2c

a

I1

I2 I3I1

I3

1

1
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Join
WMFN

Affine Delta

0 0 0

1 0 0

0 1 0

I2b

a

I1

I2 I3I1

I3

0 0 0

1 0 0

0 1 0

I2c

b

I1

o2 I3I1

I30 0 0

1 0 0

0 1 0

I2

s
e
c
o
n
d

first

I1

I2 I3I1

I3

0 0

1 0

I2c

a

I1

I2 I3I1

I3

0 0

1 0

I2

s
e
c
o
n
d

first

I1

I2 I3I1

I3

Join
MAX

0 0 0

1 0 0

1 1 0

I2
s
e
c
o
n
d

first

I1

I2 I3I1

I3

1

1

WMVN

Next(first:b second:c)Ne
xt
(f
ir
st
:a
 s
ec
on
d:
b)

Next(first:a second:c)

CONDITIONAL Transitive
   Conditions: Next(a,b)
               Next(b,c)
   Actions: Next(a,c)

Procedural Memory (Rules)
In More Detail

VAN

VAN

FAN

BF

BF

BM

BM
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Semantic Memory (Classifier)

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

4

Dog=1

B: Boolean
S: Symbolic
D: Discrete
C: Continuous

Function

WM

Join

Dog=1Dog=1

F=.05, T=.95

S
ilv

e
r=

.0
5
, 

B
ro

w
n
=

.7
,

W
h

ite
=

.2
5

[1
,5

0
)=

.0
0

0
3

w
-.0

0
0
3
,

[5
0

,1
5

0
)=

.0
2
-.0

0
0

1
w

A subset of factor nodes 
(and no variable nodes)

Given cues, retrieve/predict object category and missing attributes
E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, Mobile=T, Weight=50

Naïve Bayes classifier

Category

Alive Legs Mobile WeightColor
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 How is spatial information represented and 
processed in minds?
 Add and delete objects from images

 Aggregate combinations into new objects

 Translate, scale and rotate objects

 Extract implied properties for further reasoning

 In a symbolic architecture either need to
 Represent and reason about images symbolically

 Connect to an imagery component (as in Soar 9)

 In Sigma, use its standard mechanisms
 Continuous, discrete and hybrid representations

 Affine transform nodes that are special purpose 
optimizations of general factor nodes

Imagery Memory (Mental Imagery)
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 Translation: Addition (offset)
 Negative (e.g., y + -3.1 or y − 3.1): Shift to the left

 Positive (e.g., y + 1.5): Shift to the right

 Scaling: Multiplication (coefficient)
 <1 (e.g. ¼ × y): Shrink

 >1 (e.g. 4.37 × y): Enlarge

 -1 (e.g., -1 × y or -y): Reflect

 Requires translation as well to scale around object center

 Rotation (by multiples of 90°): Swap dimensions
 x   ⇄ y

 In general also requires reflections and translations

Affine Transforms

Special purpose optimization of standard 
factor node that operates on 

variables/dimensions & their region 
boundaries

Yields a form of primitive mental arithmetic
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Transform a Z Tetromino (via Affine Nodes)

CONDITIONAL Rotate-90-Right
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:4-y y:x)

CONDITIONAL Reflect-Horizontal
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:4-x y:y)

CONDITIONAL Scale-Half-Horizontal
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:x/2+1 y:y)
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CONDITIONAL Left-Edge
   Conditions: (Union x:x y:y)
               (Union – x:x-.0001 y:y)
   Actions: (Left-Edge x:x y:y)

×

Edge Extraction

×

CONDITIONAL Ovelap-0-1
   Conditions: (Image object:0 x:x y:y)
               (image object:1 x:x y:y)
   Actions: (Overlap overlap:0 x:x y:y)

Overlap Detection
 CONDITIONAL Union
    Conditions: (Image object:o x:x y:y)
    Actions: (Composite x:x y:y)

Max

Object Composition

Composition and Extraction

negated condition
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DECISIONS
& LEARNING
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 Choice of best alternative at the cognitive level is computed 
as a side effect of MAX summarization over messages 
arriving at WMFN nodes
 As MAX is computed, maximal (sub)regions are tracked for argmax

 Choice of expected value involves EV summarization

 Choice by probability matching involves a variant of 
INTEGRAL summarization
 Can also transform function before summarization to yield variations 

such as Boltzmann/softmax selection

Decisions at Working Memory Factor Nodes (WMFNs)
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Learning at Function Factor Nodes (FFNs)

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

4

Gradient defined by feedback to function node
    Normalize (and subtract out average)
Multiply by learning rate
Add to function, smooth and normalize

Similar to backpropagation 
in NNs, but don’t need a 
separate backprop phase

Local, incremental search 
for optimal weights

Gradient descent

Only function/parameter learning, not structure learning
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Learning Examples

 Tools to learn naïve-Bayes classifiers from data

 Separate train and test sets

 Supervised or unsupervised

 Specifiable number of training cycles

 Episodic learning

 Episodes (values of state predicates at decision time)

 Reinforcement learning learns to predict:

 Rewards at states

 Projected future values of states

 Q values for operators at states

 (optional) Models of the actions used

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09

Dummy (D)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B) Concept (S)
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 A core competency in cognition
 Back at least to Tulving (1983) in psychology

 Back at least to Vere & Bickmore (1990) in AI

 Spans ability to
 Store history of what has been experienced

 Autobiographical and temporal

 Selectively retrieve and reuse information from past episodes

 Replay fragments of past history

 Not yet pervasive in cognitive architectures
 But see work in Soar, Icarus, ACT-R, ..

 General relationship to CBR and IBL

Episodic Memory
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 Episode: Distributions over state predicates at decision time

 Three key processes
 Learning a new episode

 Selecting best previous time

 Retrieving features from selected time

 Naïve Bayes classifier over distributions (like SM) but
 Time acts as the category

 MAP/max-product used to retrieve single episode coherently

How Episodic Memory and Learning Works in Sigma

Episo
dic 

Memo
ry

Seman
tic 

Memor
y

Procedur
al 

Memory

Working Memory

Image
ry

Memo
ry

Working Memory

Long-Term Memory

Perception

Semantic Episodic
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 Modeled in Sigma as a discrete numeric type
 Automatically incremented once per cognitive/decision cycle

 Must distinguish past from present
 Episode learning depends on present

 Episode selection depends on comparing past and present

 Episode retrieval depends on past
 With results then being distinguishable from present

 Use related but different predicates & working memory buffers
 Time vs. Time*Episodic, Concept vs. Concept*Episodic, …

 Use one conditional per episodic process per feature
 Appropriately considering past vs. present as necessary

 Tying functions together to share what is learned

 Episodic predicates and conditionals generated automatically 
from state predicates such as Legs

Time as a Category

0 1 2 3 4 5 6 7

…

Conditional Legs-Time*Retrieve
  Conditions: Time*Episodic(value:t)
  Condacts: Legs*Episodic(value:l)
  Function(t,l): Legs-Time*Learn
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 Category prior – Time*Episodic – for episodic classifier
 Learning at each cycle (w/ normalization) yields exponential “decay”

 Episodic selection automatically provides feedback to adjust
 Implicitly takes into consideration frequency and recency

Time as a Function

Conditional Legs-Time*Select
  Conditions: Legs(value:l)
  Condacts: Time*Episodic(value:t)
  Function(t,l): Legs-Time*Learn

Conditional Time*Access
  Condacts: Time*Episodic(value:t)
  Function(t): Time*Learn

Conditional Time*Learn
  Condacts: Time(value:t)
  Function(t): Time*Learn

Mimics base-level activation!
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 Trades off partial match across 
multiple cues with temporal prior

 Retrieves all features from single 
best episode when they exist

 Can replay a sequence deliberately

 Works for more complexly 
structured tasks too

Results

1 2 3-0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

T5
T6
T7
T8
T9
T10
T11
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+: Piecewise-linear functions track only changes in memories

–: Reprocess entire episodic memory every cycle
 A function is reprocessed in its entirety if any region in it changes

 Implies need for some form of incremental message processing

Efficiency

Time (msec) per cycle over trials
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7

0
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7

0 0 0



54

Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7

0 0 0 9
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7

0 9.855.81225
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 Knowledge:
 Initial uniform predictors for:

 Current reward (R)

 Projected future reward (P)

 Action preferences (Q)

 Regression (backup) knowledge

 Action models (predict next states)

 Supervised learning of:

 Current reward (R)

 Projected future reward (P)

 Action preferences (Q)

 Add Diachronic cycles to also 
learn action models

Deconstructing RL in Sigma

0 1 2 3 4 5 6 7

Reward

Projected

Q

0 1 2 3 4 5 6 7
0
2
4
6
8

Left

Right

0 1 2 3 4 5 6 7
0

5

10

0 1 2 3 4 5 6 7
0
2
4
6
8

Graphs are of expected values, but 
learning is actually of full distributions

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09
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 From specifications of core state predicates automatically 
generate additional types, predicates and conditionals as 
needed for various forms of learning

 Synchronic prediction
 Map learning in SLAM

 Acoustic function learning in speech HMM

 Diachronic prediction
 Learning action models in RL

 Transition function learning in speech HMM

 Episodic learning

 Reinforcement learning

Template-Based Structure Creation
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SUMMARY
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 Initializing

 System: init

 Operators: init-operator

 Programming

 Type: new-type

 Predicate: predicate

 Conditional: conditional

 Input

 Evidence: evidence

 Perception: perceive

 Executing

 Messages: r

 Decisions: d

 Trials: t

Basic User Functions

 Printing

 Types: pts

 Predicates: pps, ppfs

 Conditionals: pcs, pcfs

 Functions: pplm, parray

 Working memory, pwm , ppwm

 Graph: g

 Debugging

 Recompute message: debug-message

 Print alpha memories: pam

 Learning: learn
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 Memory [ICCM 10]

 Procedural (rule)

 Declarative (semantic/episodic) [CogSci 14]

 Constraint

 Distributed vectors [AGI 14a]

 Problem solving
 Preference based decisions [AGI 11]

 Impasse-driven reflection [AGI 13]

 Decision-theoretic (POMDP) [BICA 11b]

 Theory of Mind [AGI 13, AGI 14b]

 Learning [ICCM 13]

 Concept (supervised/unsupervised)

 Episodic [CogSci 14]

 Reinforcement [AGI 12a, AGI 14b]

 Action/transition models [AGI 12a]

 Models of other agents [AGI 14b]

 Perceptual (including maps in SLAM)

Overall Progress on Sigma

 Mental imagery [BICA 11a; AGI 12b]

 1-3D continuous imagery buffer

 Object transformation

 Feature & relationship detection

 Perception

 Object recognition (CRFs) [BICA 11b]

 Isolated word recognition (HMMs)

 Localization [BICA 11b]

 Natural language

 Question answering (selection)

 Word sense disambiguation [ICCM 13]

 Part of speech tagging [ICCM 13]

 Graph integration [BICA 11b]

 CRF + Localization + POMDP

 Optimization [ICCM 12]

Some of these are still just beginnings
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 Scaling up knowledge and learning

 Continuous speech understanding, and its integration with 
language and cognition

 Distributed vector representations and their role in 
(integrating) speech, language and cognition

 Emotion/affect and its relationship to the architecture

 Learning of models of others

 Lower architectural levels

 Adaptive virtual humans

Current and Near Future Topics
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Closed vs. open world functions

Universal vs. unique variables

Discrete vs. continuous variables

Boolean vs. numeric function values

Uni- vs. bi-directional links

Max vs. sum summarization

Long- vs. short-term memory

Product vs. affine factors

0

x+.3y

0

1

.5y

6x

x-y

1

Piecewise Continuous Functions

Rule memory Preference-
based decisions
Episodic memory POMDP-based 
decisions
Semantic memory Localization
Mental imagery …
Edge detectors

➤
➤
➤
➤
➤

➤
➤

➤

Broad Set of Capabilities from Space of Variations
Highlighting Functional Elegance and Grand Unification

 Knowledge above architecture also involved
– Conditionals and predicates that are compiled into subgraphsf1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Factor graphs w/ Summary Product
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 Can full range of capabilities be provided in this manner?

 Can it all be sufficiently efficient for real time behavior?

 What are the functional gains?

 Can the human mind (and brain) be modeled?

Fundamental Questions about Sigma
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 Sigma website is http://cogarch.ict.usc.edu
 Most papers on Sigma can be found through there

 New papers on which I’m an author usually appear online sooner at 
http://cs.usc.edu/~rosenblo/pubs.html 

 Full use of Sigma requires a non-free version of LispWorks
 The free version imposes heap-size limits that are problematic for 

anything other than small programs

 We will soon have a version without the graph, regression and parallel 
processing interfaces that should run in any version of Lisp

 Sigma is open source (simplified BSD license)
 We are not yet distributing it openly because of a lack of appropriate 

documentation, but we are beginning to make progress on this

 We will consider special requests in the interim

Wrapping Up

http://cogarch.ict.usc.edu/
http://cogarch.ict.usc.edu/
http://cs.usc.edu/~rosenblo/pubs.html
http://cs.usc.edu/~rosenblo/pubs.html
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