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 Not an introduction to programming in Sigma
 Also not a hands on tutorial

 Goal is instead to provide a deeper insight into Sigma:
 What it is about

 How it works

 What it is capable of

 Will mix lecture, live demonstration and Q&A

 Sigma 34 on fairly slow machine (old MacBook Air)

 Sigma 35 on more appropriate machine runs 2-3 times faster

Goal of this Tutorial

First public tutorial on Sigma

Feel free to ask questions at any time



3

Working Memory

Learni
ng

Long-Term Memory

D
e
c
is

io
n

 Fixed structure underlying mind (& thus intelligent behavior)
 Defines mechanisms for memory, reasoning, learning, interaction, ...

 Specifies how mechanisms interact

 Supports acquisition and use of knowledge and skills

 Related to AGI architectures, intelligent agent & robot 
architectures, AI languages, whole brain models, …

Cognitive Architecture

Examples from Soar

USC/ICT – SASOCMU USC/ISI & UM – IFOR
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Overall Desiderata for the Sigma ( ) Architecture𝚺

 A new breed of cognitive architecture that is
 Grand unified

 Cognitive + key non-cognitive (perceptuomotor, affective, …)

 Functionally elegant
 Broadly capable yet simple and theoretically elegant

 Sufficiently efficient
 Fast enough for anticipated applications

 For virtual humans (& intelligent agents/robots) that are
 Broadly, deeply and robustly cognitive

 Interactive with their physical and social worlds

 Adaptive given their interactions and experience

 For integrated models of natural minds

Hybrid: Discrete + Continuous
Mixed: Symbolic/Relational + Probabilistic/Statistical
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 Can the diversity of intelligent behavior arise from the interactions 
among a small general set of mechanisms?

 Cognitive Newton’s laws

 Elementary cognitive particles  Periodic table of behaviors

 Cognitive axioms  “Proofs” of behavioral theorems

 Given a small set of general mechanisms how many requisite 
behaviors can be produced?

 Discovering “proofs” of intelligent behaviors

 Deconstructing intelligent behaviors in terms of cognitive mechanisms

 Towards deeper theories with greater explanatory reach

 Discovering a sufficient small general set of cognitive mechanisms

 Discovering how they can yield the breadth of intelligent behavior

More on Functional Elegance

Akin to Universal AI (Hutter) in spirit, but not necessarily as minimal



6

Soar 9 (UM)

Modular versus Deconstructed (Functionally Elegant) 
Approaches to Cognitive Architecture

Episodic 
Memory

Semanti
c 

Memory

Procedural 
Memory

Working Memory

Imagery
Memory

Perception Motor

Modular

Episodic 
Memory

Semanti
c 

Memory

Procedural 
Memory

Working Memory

Imagery
Memory

Working Memory

Long-Term Memory

Perception Motor

Deconstructed

Specialization and Combination
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Graphical Architecture Hypothesis

Soar 9

Cognitive
Architectures

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Graphical
Models

+

Key to success is blending what has been learned from over three decades 
of independent work in cognitive architectures and graphical models
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 Constructed in layers
 In analogy to computer systems

The Structure of Sigma

Computer System

Computer
Architecture

Microcode
Architecture

Programs & 
Services

Hardware

Memory & ReasoningInput Decisions & Learning Output

Cognitive Architecture:
Predicates
Conditionals
Control structure

Graph ModificationGraph Solution
Graphical Architecture:

Graphical models
Piecewise-linear 

functions
Gradient-descent 

learning

 𝚺 Cognitive System

Cognitive
Architecture

Graphical
Architecture

Knowledge & Skills

Lisp
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COGNITIVE 
ARCHITECTURE

Predicates

Conditionals

Control Structure
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 Transitive closure: Next(a, b) & Next(b, c)  Next(a, c)
 Given Next(i1, i2) and Next(i2, i3), yield Next(i1, i3)

 Naïve Bayes classifier
 Given cues, retrieve/predict object category & missing attributes

 E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, 
Mobile=T, Weight=67

Initial Example Tasks

Category

Alive Legs Mobile WeightColor
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 Specify relations among typed arguments
 Defined via a name, typed arguments and other optional attributes
 (predicate 'concept :arguments '((id id) (value type %)))

 Types may be symbolic or numeric (discrete or continuous)
 (new-type 'id :constants '(i1 i2 i3))
 (new-type 'type :constants '(walker table dog human))
 (new-type 'color :constants '(silver brown white))
 (new-type 'i04 :numeric t :discrete t :min 0 :max 5)

 Discrete [0, 5) => 0, 1, 2, 3, 4

 (new-type 'weight :numeric t :min 0 :max 500)
 Continuous [0, 500) => [0, 500-ε]

 Predicates may be open or closed world
 Whether unspecified values are assumed false (0) or unknown (1)
 (predicate 'concept2 :world 'closed :arguments '((id id) (value type !)))

 Arguments may be universal or unique (distribution or selection)
 (predicate 'next :world 'closed :arguments '((id id) (value id)))

Predicates

Symbolic

Discrete Numeric

Continuous Numeric

Pure rules: Closed and universal
Pure probabilities: Open and unique

When both, unique are “function of” universal
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 Each predicate induces a segment of working memory (WM)
 Closed-world predicates latch their results for later reuse while open-

world predicates only maintain results while supported
 Selection predicates latch a specific choice rather than whole distribution

 Best, probability matching, Boltzmann, expected value, …

 Perception predicates induce a segment of the perceptual buffer
 Input is latched in perceptual buffer until changed

 Predicates may also include an optional (piecewise linear) function
 Long-term memory (LTM) for predicate
(predicate 'concept-color :arguments '((concept type) (color color %))
           :function '((.95 walker silver) (.05 walker brown)
                       (.05 table silver) (.95 table brown)
                       (.05 dog silver) (.7 dog brown) (.25 dog white)
                       (.5 human brown) (.5 human white)))

 With episodic memory, also get LTM for history of predicate’s values

Predicate Memories

:perception t

P(color | concept)
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 Structure long-term memory (LTM) and basic reasoning

 Deep blending of traditional rules and probabilistic networks

 Comprise a name, predicate patterns and an optional function

 Patterns may include constant tests and variables (in parentheses)
 (tetromino (x (x)) (y 1) (present true))
 [Constant tests have been generalized to piecewise-linear filters]

 Patterns may be conditions, actions or condacts

 As with predicate functions, conditional functions are piecewise linear

Conditionals

 (conditional 'trans
    :conditions ’((next (id (a)) (value (b)))
                  (next (id (b)) (value (c))))
    :actions '((next (id (a)) (value (c)))))

 (conditional 'concept-color*join
    :conditions '((object (state (state)) (id (id))))
    :condacts '((concept (id (id)) (value (concept)))
                (color (id (id)) (value (color)))
                (concept-color (concept (concept)) (color (color))))

 (conditional 'acceptable
    :conditions '((state (state (s)))
                  (operator (id (o)) (state (s))))
    :actions '((selected (state (s)) (operator (o))))
               :function .1)
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 Conditions and actions embody traditional rule semantics

 Conditions: Access information in WM

 Actions: Suggest changes to WM

 Multiple actions for the same predicate must combine in WM
 Traditional parallel rule system uses disjunction (or): A ∨ B
 Sigma uses multiple approaches depending on nature of predicate

 For a universal predicate, uses maximum: Max(A, B)

 For a normalized distribution, uses probabilistic or: P(A ∨ B)
 = P(A) + P(B) – P(AB) ≈  P(A) + P(B) – P(A)P(B)

 Assumes independence since doesn’t have access to P(AB)

 For an unnormalized distribution, uses sum: P(A) + P(B)

Conditionals (Rules)

(conditional 'trans
   :conditions ’((next (id (a)) (value (b)))
                 (next (id (b)) (value (c))))
   :actions '((next (id (a)) (value (c)))))

(conditional 'acceptable
   :conditions '((state (state (s)))
                 (operator (id (o)) (state (s))))
   :actions '((selected (state (s)) (operator (o))))
   :function .1)
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 Condacts embody (bidirectional) constraint/probability semantics

 Access WM and suggest changes to it (combining multiplicatively)

 Functions relate/constrain/weight combinations of values of 
specified variables (or are constant if no variables specified)

 Functions traditionally part of conditionals in Sigma, but now 
preferably specified as part of predicates, unless constant

 Was effectively specifying a pseudo-predicate in conditionals

Conditionals (Probabilistic Networks)

 (conditional 'concept-color
               :conditions '((object (state (state)) (id (id))))
               :condacts '((concept (id (id)) (value (concept)))
                           (color (id (id)) (value (color))))
               :function-variable-names '(concept color)
               :function '((.95 walker silver) (.05 walker brown)
                           (.05 table silver) (.95 table brown)
                           (.05 dog silver) (.7 dog brown) (.25 dog white)
                           (.5 human brown) (.5 human white)))

(conditional 'concept-color*join
    :conditions '((object (state (state)) (id (id))))
    :condacts '((concept (id (id)) (value (concept)))
                (color (id (id)) (value (color)))
                (concept-color (concept (concept)) (color (color))))

(predicate 'concept-color :arguments '((concept type) (color color %))
    :function '((.95 walker silver) (.05 walker brown)
                (.05 table silver) (.95 table brown)
                (.05 dog silver) (.7 dog brown) (.25 dog white)
                (.5 human brown) (.5 human white)))

Pattern types and functions can be mixed arbitrarily in conditionals
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 Unified representation for continuous, discrete and symbolic data

 At base have multidimensional continuous functions
 One dimension per variable, with multiple dimensions providing relations
 Approximated as piecewise linear over arrays/tensors of regions

 Discretize domain for discrete distributions (& symbols)

 Booleanize range (and add symbol table) for symbols

    Color(O1, Brown) & Alive(O1, T)

 Dimensions/variables are typed

Piecewise Linear Functions

P(weight | 
concept) Walker Table …

[1,10> .01w .001w …

[10,20> .2-.01w “ …

[20,50> 0
.025-.00

025w …

[50,100
>

“ “ …

O1 Brown Silver White

T 1

0
F 0

P(legs | 
concept) Walker Table …

1 0 0 …

2 0 0 …

3 0 .1 …

4 1 .9 …

Analogous to implementing digital 
circuits by restricting an inherently 

continuous underlying substrate
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1 2 3 40

1 2 3 40

1.3 2.1 2.95 40 2.4

1 2 3 40 walker table dog human

1

(a) Continuous (approximation)

(c) Discrete (center on integer)

(b) Discrete (start on integer)

(d) Symbolic

Piecewise Continuous) Functions

Unique variables: Distribution over which element of domain is valid (like random variables)
Universal variables: Any or all elements of the domain can be valid (like rule variables)
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 Classic sliding tile puzzle

 Represented symbolically in standard AI systems

 LeftOf(cell11, cell21), At(tile1, cell11), etc.

 Typically solved via some weak search method

The Eight Puzzle
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 Instead represent as a 3D function
 Continuous spatial x & y dimensions

 dimension[0-3)

 Discrete tile dimension (an xy plane)

 tile[0:9)

 Region of plane with tile has value 1

 All other regions have value 0

Hybrid Representation of Eight Puzzle Board
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 Offset boundaries of regions along a dimension

 Special purpose optimization of a delta function

How to Slide a Tile

CONDITIONAL Move-Right
   Conditions: (selected state:s operator:o)
               (operator id:o state:s x:x y:y)

             (board state:s x:x y:y tile:t)
             (board state:s x:x+1 y:y tile:0)
 Actions: (board state:s x:x+1 y:y tile:t)
          (board state:s x:x y:y tile:0)

C
R

O
PP

A
D
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 A reactive layer
 One (internally parallel) graph/cognitive cycle

Which acts as the inner loop for

 A deliberative layer
 Serial selection and application of operators

Which acts as the inner loop for

 A reflective layer
 Recursive, impasse-driven, meta-level generation

 The layers differ in
 Time scales

 Serial versus parallel

 Controlled (System 2) versus automatic (System 1)

Control Structure: (Soar-like) Nesting of Layers

Tie

No-Change
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 Perceive into perceptual buffer (for perception predicates)
 Ideally/ultimately just raw signal

 Process conditionals to update distributions in WM
 Accomplishes both long-term memory access and basic reasoning

 For both cognitive and sub-cognitive (e.g., perceptual) processing

 Doesn’t make decisions or learn

 Decide by choosing one set of values for the selection arguments in 
each selection predicate
(predicate 'concept2 :world 'closed :arguments '((id id) (value type !)))

 Latch WM distributions and selections (for closed-world predicates)

 Learn for predicate and conditional functions (when enabled)

 Execute output commands

Reactive Layer
One Decision/Cognitive Cycle

Memory & ReasoningInput Decisions & Learning Output
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Deliberative Layer
The Problem Space Computational Model

Follows path determined by knowledge
•   Knowledge-intensive or algorithmic behavior
•   Best, probability matching, Boltzmann, …

Doesn’t actually do combinatoric search
•  Requires reflection
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 Determine location in corridor

 Map corridor

 Learn to go to goal location in corridor

 Learn to model action effects

New Task: Simulated Robot in 1D Corridor

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09

Wall WallDoor1 Door2

RL

SLAM
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 States
 Closed-world predicates with state argument

  (predicate 'location :world 'closed
    :arguments '((state state) (x location !)))
  (predicate 'board :world 'closed

        :arguments '((state state) (x dimension) (y dimension) (tile tile !)))

 Operators
 A type for (internal) actions

 Specified via init-operators or init

 Operators selected for states via selected predicate
(predicate ’selected :world ’closed :select ’best
  :arguments '((state state) (operator tile !)))

 Operators apply to states – via conditionals – to yield new states
 Assumed done, and removed, on change to a unique state predicate

Deliberative Layer
The Problem Space Computational Model

0 1 2 3 4 5 6 7

state predicates
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 Impasses occur for problems in operator selection
 None: No operator acceptable (i.e., none with a non-zero rating)

 Tie: More than one operator has the same best rating
 And the rating is not 1 (best)

 No-change: An operator remains selected for >1 decision

 Impasses yield subgoals (meta-levels, reflective-levels, …)
 Confusingly, these levels are called states (modeled after Soar)

 The state argument in predicates is thus actually for levels

 There are no unique symbols designating distinct states at a level

 Subgoal flushed when impasse goes away
 Or when a change occurs higher in hierarchy

Reflective Layer
Impasses and Subgoaling (Meta-Levels)

Tie

No-Change
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 Tie impasses for selecting 
operators

 No-change impasses for 
implementing complex (multi-
step) operators

 Can combine for search
0. Tie among task operators

1. No-change on evaluation 
operators

2. Simulate operator to see how 
good it is

Typical Processing
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Ultimatum Game

 Multiagent game (Use init to specify multiagent type)

 A offers to keep 0, 1, 2 or 3 out of a total of 3, with rest to B

 B accepts or rejects offer

 If B accepts, A gets offer and B gets (3 – offer)

 If B rejects, both get nothing

0
1
2
3

E(2)

accept
reject

tie

no-change

2

E(accept)

tie

no-change

accept

A

B

0
1
2
3tie

none

A
1

A
0
1
2
3

E(2)

accept
reject

tie

no-change

2

tie

none

A

B

TA TBaccept rewardoffer

exp

Or can solve reactively via explicit POMDP:

Automatize?

Solves implicit POMDP

Softmax model of B’s
  choice (from reward)
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GRAPHICAL
ARCHITECTURE

Graphical models

Piecewise-linear functions

Gradient-descent learning
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 Efficient computation over multivariate functions by leveraging forms of 

independence to decompose them into products of simpler subfunctions
 Bayesian/Markov networks, Markov/conditional random fields, factor graphs

 Typically solve via message passing (e.g., summary product) or sampling

 Can support mixed and hybrid processing

 Several neural network models map onto them

 Yield broad range of state-of-the-art capability from a uniform base
 Across symbols, probabilities & signals via uniform representation & reasoning algorithm

 (Loopy) belief propagation, forward-backward algorithm, Kalman filters, Viterbi algorithm, FFT, turbo decoding, arc-

consistency, production match, …

Graphical Models

w

y
x

z

u

p(u,w,x,y,z) = p(u)p(w)p(x|u,w)p(y|x)p(z|
x)

f1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z) Σ

 major potential for satisfying all three desiderata
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 Compute variable marginals (sum-product/integral-product) or mode 
of entire graph (max-product)

 Pass messages on links and process at nodes
 Messages are distributions over link variables (starting w/ evidence)

 At variable nodes messages are combined via pointwise product

 At factor nodes do products, and summarize out unneeded variables:

12
21
32
 ...

y zx

f1 =

0 2 4 6 …
1 3 5 7 …
2 4 6 8 …
    …

f2 =

0 1 2 …
1 2 3 …
2 3 4 …
    …

(Factor Graphs and) Summary Product Algorithm

2
3
4
..
.

6
7
8
..
.

[0 0 0 1 0 …] [0 0 1 0 0 …]
“3” “2”

In Sigma, both functions and 
messages are piecewise linear
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 Predicates and conditionals compile into portions of factor graph
 Graph solution via passing of piecewise-linear messages yields both 

long-term memory access and basic reasoning

 Graph modification based on messages arriving at factor nodes yields 
both decisions and learning

Relationship Back to Cognitive Architecture 

WM

Alpha Network

Beta Network

Alpha Memories

Beta Memory

Rule Node

Rete for rule match

C1 & C2 & C3  A1 & A2
WMFNs

WMVNs

Gamma Network (CF)

Beta Network

Inversion

Filter

Affine Delta

Affine

Alpha Network

conditions

condact

actions

function
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CONDITIONAL Transitive
   Conditions: Next(a,b)
               Next(b,c)
   Actions: Next(a,c)

(type ’ID :constants ‘(I1 I2 I3))

(predicate ‘Next ‘((first ID) (second ID)) :world ‘closed)

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0 0

1 0 0

0 1 0

0 0

1 0

 Procedural if-then Structures

 Just conditions and actions

Procedural Memory (Rules)

WM

Pattern

Join

I2

s
e
c
o
n
d

first

I1

I2 I3I1

I3

WM Next(I1,I2)
Next(I2,I3)

Ne
xt
(a
,b
)

Next(b,c)
I2c

b

I1

I2 I3I1

I3

I2b

a

I1

I2 I3I1

I3

a

b

c

I2c

a

I1

I2 I3I1

I3

1

1
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Join
WMFN

Affine Delta

0 0 0

1 0 0

0 1 0

I2b

a

I1

I2 I3I1

I3

0 0 0

1 0 0

0 1 0

I2c

b

I1

o2 I3I1

I30 0 0

1 0 0

0 1 0

I2

s
e
c
o
n
d

first

I1

I2 I3I1

I3

0 0

1 0

I2c

a

I1

I2 I3I1

I3

0 0

1 0

I2

s
e
c
o
n
d

first

I1

I2 I3I1

I3

Join
MAX

0 0 0

1 0 0

1 1 0

I2
s
e
c
o
n
d

first

I1

I2 I3I1

I3

1

1

WMVN

Next(first:b second:c)Ne
xt
(f
ir
st
:a
 s
ec
on
d:
b)

Next(first:a second:c)

CONDITIONAL Transitive
   Conditions: Next(a,b)
               Next(b,c)
   Actions: Next(a,c)

Procedural Memory (Rules)
In More Detail

VAN

VAN

FAN

BF

BF

BM

BM
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Semantic Memory (Classifier)

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

4

Dog=1

B: Boolean
S: Symbolic
D: Discrete
C: Continuous

Function

WM

Join

Dog=1Dog=1

F=.05, T=.95

S
ilv

e
r=

.0
5
, 

B
ro

w
n
=

.7
,

W
h

ite
=

.2
5

[1
,5

0
)=

.0
0

0
3

w
-.0

0
0
3
,

[5
0

,1
5

0
)=

.0
2
-.0

0
0

1
w

A subset of factor nodes 
(and no variable nodes)

Given cues, retrieve/predict object category and missing attributes
E.g., Given Alive=T & Legs=4 Retrieve Category=Dog, Color=Brown, Mobile=T, Weight=50

Naïve Bayes classifier

Category

Alive Legs Mobile WeightColor
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 How is spatial information represented and 
processed in minds?
 Add and delete objects from images

 Aggregate combinations into new objects

 Translate, scale and rotate objects

 Extract implied properties for further reasoning

 In a symbolic architecture either need to
 Represent and reason about images symbolically

 Connect to an imagery component (as in Soar 9)

 In Sigma, use its standard mechanisms
 Continuous, discrete and hybrid representations

 Affine transform nodes that are special purpose 
optimizations of general factor nodes

Imagery Memory (Mental Imagery)
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 Translation: Addition (offset)
 Negative (e.g., y + -3.1 or y − 3.1): Shift to the left

 Positive (e.g., y + 1.5): Shift to the right

 Scaling: Multiplication (coefficient)
 <1 (e.g. ¼ × y): Shrink

 >1 (e.g. 4.37 × y): Enlarge

 -1 (e.g., -1 × y or -y): Reflect

 Requires translation as well to scale around object center

 Rotation (by multiples of 90°): Swap dimensions
 x   ⇄ y

 In general also requires reflections and translations

Affine Transforms

Special purpose optimization of standard 
factor node that operates on 

variables/dimensions & their region 
boundaries

Yields a form of primitive mental arithmetic
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Transform a Z Tetromino (via Affine Nodes)

CONDITIONAL Rotate-90-Right
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:4-y y:x)

CONDITIONAL Reflect-Horizontal
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:4-x y:y)

CONDITIONAL Scale-Half-Horizontal
   Conditions: (tetromino x:x y:y)
   Actions: (tetromino x:x/2+1 y:y)
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CONDITIONAL Left-Edge
   Conditions: (Union x:x y:y)
               (Union – x:x-.0001 y:y)
   Actions: (Left-Edge x:x y:y)

×

Edge Extraction

×

CONDITIONAL Ovelap-0-1
   Conditions: (Image object:0 x:x y:y)
               (image object:1 x:x y:y)
   Actions: (Overlap overlap:0 x:x y:y)

Overlap Detection
 CONDITIONAL Union
    Conditions: (Image object:o x:x y:y)
    Actions: (Composite x:x y:y)

Max

Object Composition

Composition and Extraction

negated condition
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DECISIONS
& LEARNING
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 Choice of best alternative at the cognitive level is computed 
as a side effect of MAX summarization over messages 
arriving at WMFN nodes
 As MAX is computed, maximal (sub)regions are tracked for argmax

 Choice of expected value involves EV summarization

 Choice by probability matching involves a variant of 
INTEGRAL summarization
 Can also transform function before summarization to yield variations 

such as Boltzmann/softmax selection

Decisions at Working Memory Factor Nodes (WMFNs)
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Learning at Function Factor Nodes (FFNs)

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

T

4

Gradient defined by feedback to function node
    Normalize (and subtract out average)
Multiply by learning rate
Add to function, smooth and normalize

Similar to backpropagation 
in NNs, but don’t need a 
separate backprop phase

Local, incremental search 
for optimal weights

Gradient descent

Only function/parameter learning, not structure learning
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Learning Examples

 Tools to learn naïve-Bayes classifiers from data

 Separate train and test sets

 Supervised or unsupervised

 Specifiable number of training cycles

 Episodic learning

 Episodes (values of state predicates at decision time)

 Reinforcement learning learns to predict:

 Rewards at states

 Projected future values of states

 Q values for operators at states

 (optional) Models of the actions used

Concept (S)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B)

0 1 2 3 4 5 6 7

G
0 0 0 0 00 09

Dummy (D)

Legs (D)Mobile (B)

Weight (C) Color (S)

Alive (B) Concept (S)
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 A core competency in cognition
 Back at least to Tulving (1983) in psychology

 Back at least to Vere & Bickmore (1990) in AI

 Spans ability to
 Store history of what has been experienced

 Autobiographical and temporal

 Selectively retrieve and reuse information from past episodes

 Replay fragments of past history

 Not yet pervasive in cognitive architectures
 But see work in Soar, Icarus, ACT-R, ..

 General relationship to CBR and IBL

Episodic Memory
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 Episode: Distributions over state predicates at decision time

 Three key processes
 Learning a new episode

 Selecting best previous time

 Retrieving features from selected time

 Naïve Bayes classifier over distributions (like SM) but
 Time acts as the category

 MAP/max-product used to retrieve single episode coherently

How Episodic Memory and Learning Works in Sigma
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Memory

Working Memory

Image
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Memo
ry

Working Memory

Long-Term Memory

Perception

Semantic Episodic
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 Modeled in Sigma as a discrete numeric type
 Automatically incremented once per cognitive/decision cycle

 Must distinguish past from present
 Episode learning depends on present

 Episode selection depends on comparing past and present

 Episode retrieval depends on past
 With results then being distinguishable from present

 Use related but different predicates & working memory buffers
 Time vs. Time*Episodic, Concept vs. Concept*Episodic, …

 Use one conditional per episodic process per feature
 Appropriately considering past vs. present as necessary

 Tying functions together to share what is learned

 Episodic predicates and conditionals generated automatically 
from state predicates such as Legs

Time as a Category

0 1 2 3 4 5 6 7

…

Conditional Legs-Time*Retrieve
  Conditions: Time*Episodic(value:t)
  Condacts: Legs*Episodic(value:l)
  Function(t,l): Legs-Time*Learn
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 Category prior – Time*Episodic – for episodic classifier
 Learning at each cycle (w/ normalization) yields exponential “decay”

 Episodic selection automatically provides feedback to adjust
 Implicitly takes into consideration frequency and recency

Time as a Function

Conditional Legs-Time*Select
  Conditions: Legs(value:l)
  Condacts: Time*Episodic(value:t)
  Function(t,l): Legs-Time*Learn

Conditional Time*Access
  Condacts: Time*Episodic(value:t)
  Function(t): Time*Learn

Conditional Time*Learn
  Condacts: Time(value:t)
  Function(t): Time*Learn

Mimics base-level activation!
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 Trades off partial match across 
multiple cues with temporal prior

 Retrieves all features from single 
best episode when they exist

 Can replay a sequence deliberately

 Works for more complexly 
structured tasks too

Results

1 2 3-0.01
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0.11

0.13

T5
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+: Piecewise-linear functions track only changes in memories

–: Reprocess entire episodic memory every cycle
 A function is reprocessed in its entirety if any region in it changes

 Implies need for some form of incremental message processing

Efficiency

Time (msec) per cycle over trials
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7
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Reinforcement Learning

Learn values of actions for states by 

backwards propagation of rewards 

received during exploration:

Q(st, at)  ← Q(st, at) + α[rt + γQ(st+1, at+1) - Q(st, at)] 

0 1 2 3 4 5 6 7

0 9.855.81225
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 Knowledge:
 Initial uniform predictors for:

 Current reward (R)

 Projected future reward (P)

 Action preferences (Q)

 Regression (backup) knowledge

 Action models (predict next states)

 Supervised learning of:

 Current reward (R)

 Projected future reward (P)

 Action preferences (Q)

 Add Diachronic cycles to also 
learn action models

Deconstructing RL in Sigma

0 1 2 3 4 5 6 7

Reward

Projected
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0 1 2 3 4 5 6 7
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Right

0 1 2 3 4 5 6 7
0
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10

0 1 2 3 4 5 6 7
0
2
4
6
8

Graphs are of expected values, but 
learning is actually of full distributions

0 1 2 3 4 5 6 7

G
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 From specifications of core state predicates automatically 
generate additional types, predicates and conditionals as 
needed for various forms of learning

 Synchronic prediction
 Map learning in SLAM

 Acoustic function learning in speech HMM

 Diachronic prediction
 Learning action models in RL

 Transition function learning in speech HMM

 Episodic learning

 Reinforcement learning

Template-Based Structure Creation
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SUMMARY
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 Initializing

 System: init

 Operators: init-operator

 Programming

 Type: new-type

 Predicate: predicate

 Conditional: conditional

 Input

 Evidence: evidence

 Perception: perceive

 Executing

 Messages: r

 Decisions: d

 Trials: t

Basic User Functions

 Printing

 Types: pts

 Predicates: pps, ppfs

 Conditionals: pcs, pcfs

 Functions: pplm, parray

 Working memory, pwm , ppwm

 Graph: g

 Debugging

 Recompute message: debug-message

 Print alpha memories: pam

 Learning: learn
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 Memory [ICCM 10]

 Procedural (rule)

 Declarative (semantic/episodic) [CogSci 14]

 Constraint

 Distributed vectors [AGI 14a]

 Problem solving
 Preference based decisions [AGI 11]

 Impasse-driven reflection [AGI 13]

 Decision-theoretic (POMDP) [BICA 11b]

 Theory of Mind [AGI 13, AGI 14b]

 Learning [ICCM 13]

 Concept (supervised/unsupervised)

 Episodic [CogSci 14]

 Reinforcement [AGI 12a, AGI 14b]

 Action/transition models [AGI 12a]

 Models of other agents [AGI 14b]

 Perceptual (including maps in SLAM)

Overall Progress on Sigma

 Mental imagery [BICA 11a; AGI 12b]

 1-3D continuous imagery buffer

 Object transformation

 Feature & relationship detection

 Perception

 Object recognition (CRFs) [BICA 11b]

 Isolated word recognition (HMMs)

 Localization [BICA 11b]

 Natural language

 Question answering (selection)

 Word sense disambiguation [ICCM 13]

 Part of speech tagging [ICCM 13]

 Graph integration [BICA 11b]

 CRF + Localization + POMDP

 Optimization [ICCM 12]

Some of these are still just beginnings



61

 Scaling up knowledge and learning

 Continuous speech understanding, and its integration with 
language and cognition

 Distributed vector representations and their role in 
(integrating) speech, language and cognition

 Emotion/affect and its relationship to the architecture

 Learning of models of others

 Lower architectural levels

 Adaptive virtual humans

Current and Near Future Topics
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Closed vs. open world functions

Universal vs. unique variables

Discrete vs. continuous variables

Boolean vs. numeric function values

Uni- vs. bi-directional links

Max vs. sum summarization

Long- vs. short-term memory

Product vs. affine factors

0

x+.3y

0

1

.5y

6x

x-y

1

Piecewise Continuous Functions

Rule memory Preference-
based decisions
Episodic memory POMDP-based 
decisions
Semantic memory Localization
Mental imagery …
Edge detectors

➤
➤
➤
➤
➤

➤
➤

➤

Broad Set of Capabilities from Space of Variations
Highlighting Functional Elegance and Grand Unification

 Knowledge above architecture also involved
– Conditionals and predicates that are compiled into subgraphsf1

w

f3f2

y

x zu

f(u,w,x,y,z) = f1(u,w,x)f2(x,y,z)f3(z)

Factor graphs w/ Summary Product
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 Can full range of capabilities be provided in this manner?

 Can it all be sufficiently efficient for real time behavior?

 What are the functional gains?

 Can the human mind (and brain) be modeled?

Fundamental Questions about Sigma
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 Sigma website is http://cogarch.ict.usc.edu
 Most papers on Sigma can be found through there

 New papers on which I’m an author usually appear online sooner at 
http://cs.usc.edu/~rosenblo/pubs.html 

 Full use of Sigma requires a non-free version of LispWorks
 The free version imposes heap-size limits that are problematic for 

anything other than small programs

 We will soon have a version without the graph, regression and parallel 
processing interfaces that should run in any version of Lisp

 Sigma is open source (simplified BSD license)
 We are not yet distributing it openly because of a lack of appropriate 

documentation, but we are beginning to make progress on this

 We will consider special requests in the interim

Wrapping Up

http://cogarch.ict.usc.edu/
http://cogarch.ict.usc.edu/
http://cs.usc.edu/~rosenblo/pubs.html
http://cs.usc.edu/~rosenblo/pubs.html
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